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Abstract. Molecular dynamics computer simulations have been made of the ordered low- 
temperature and orientationally disordered high-temperature phases of crystalline sodium 
nitrate. The interionic force model used in the simulations is based on a rigid-ion rep- 
resentation of the electrostatic interactions, supplemented by a set of atom-atom potentials 
of the Buckingham type, Five simulations have been carried out, covering the temperature 
range from 293 to 570 K. Where possible, detailed comparison is made with experiment, 
and generally satisfactory agreement is found. Anion disorder is shown to consist primarily 
in reorientation about an axis parallel to the crystallographic c direction, but only at the 
highest temperature studied can the motion be described as that of a free, quasi-two- 
dimensional rotor. 

The spectra of translational and librational lattice modes have been computed and the 
way in which these change with temperature is discussed in terms of translation-rotation 
coupling. Numerical estimates are presented of the degree of correlation between trans- 
lations and rotations at different points in the Brillouin zone, and possible ordering processes 
are identified. The diffuse scattering predicted by the model is analysed in detail and related 
to the results of x-ray and neutron scattering experiments. It is suggested that in the high- 
temperature phase there exist two major ordering processes and that the competition 
between the two results in the experimentally observed critical exponent for the macroscopic 
order parameter being significantly less than its classical value. The same argument is 
formulated on the basis of a Landau-type expression for the free energy. Although the 
simulations have been limited to the specific case of sodium nitrate, the results should also 
be helpful in understanding the nature of the corresponding phase transition in calcite. 

1. Introduction 

Sodium nitrate crystals have the same low-temperature structure as calcite ( R ~ c ) .  As 
the temperature is raised from room temperature the anions disorder; they still lie in 
planes perpendicular to the c axis, but their orientations in these planes becomes 
disordered. This process culminates in an order-disorder phase transition near 549 K. 
The transition seems to be continuous and occurs over a remarkably long temperature 
range. A similar transition occurs at 1250 K in the calcite phase of calcium carbonate, 
and it is thought that this accounts for the non-linearity of the boundary between the 
stability fields of the two forms of calcium carbonate, calcite and aragonite, in apressure- 
temperature phase diagram. Calcium carbonate is of particular interest to mineralogists 
since it is an important component of the Earth’s crust. 
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Figure 1. (a) Structure of the ordered (R%) phase of sodium nitrate. A plane of nitrate ions 
is shown above, while in the lower figure the cations in the layer below are shaded and the 
positions and orientations of the nitrate ions in the layer below that are indicated by bond 
vectors. (b )  View of the hypothetical F structure. Compared with the R ~ c  structure the 
central row of nitrate ions has been rotated by 180". The rows indicated by arrows form the 
F plane and are shifted by 1 A to the left. (c) View of the F structure looking onto the F 
plane. 

The disordering transition in sodium nitrate is used as a model for investigating the 
disordering in calcite, since it is more readily accessible by experiment than the latter. 
The onset of disorder is manifest in many properties: the cell parameter c expands 
anonlalously, the Raman-active librational frequency drops and the Raman linewidths 
of the internal modes increase by a considerably greater extent than is predicted from 
classical multiphonon scattering. The disordering process has also been studied by 
birefringence and x-ray diffuse scattering. Recently, Salje and co-workers [l, 21 have 
used x-ray intensity, excess birefringence, Raman hard-mode linewidth and Raman 
lineshifts to determine critical exponents from macroscopic order parameters. Although 
earlier workers suggested that the critical exponent /3 was equal to 1/2 (Bragg-Williams 
model) [3] or to 1/3 [4], this most recent work suggests a value of about 0.22 near the 
transition temperature, rising to the classical value of 1/4 at lower temperatures. Poon 
and Salje [l] point out that the value of 0.22 is close to that obtained in numerical 
simulations of the three-state Potts model. Although the nitrate ion has threefold 
symmetry, it has only two distinct orientations in the low-temperature structure, so that 
an Ising-like behaviour (/3 = 0.325) might have been expected. One can conclude that 
the disordering mechanism is not straightforward. 

None of the experimental methods used thus far gives direct information about the 
nature of the disordering process on a molecular scale. For example, it is not definitely 
known whether the orientations of the nitrate ions become random, or whether the two 
orientations found in the low-temperature structure become equally probable at each 
site, or whether there are additional favoured orientations in the high-temperature 
structure. Computer simulation provides a method of answering such questions for well 



Orientational disordering in crystalline N a N 0 3  6525 

defined model systems. Although the results pertain to the assumed intermolecular 
potential, they can be used in the interpretation of observations of real systems, provided 
the potential is chosen with care. 

In an attempt to understand the microscopic behaviour of the system we have carried 
out molecular dynamics computer simulations of a model for sodium nitrate. We have 
observed the onset of disorder and many of its macroscopic manifestations. We find that 
there are competing ordering processes that interfere with each other, which in turn may 
account for the sharp onset of disorder (p  less than the classical value of 1 /4 )  as T, is 
approached from below. There is experimental evidence provided by x-ray and neutron 
diffuse scattering for the existence of these alternative ordering processes in both sodium 
nitrate and calcite [2]. 

2. Structure 

In the low-temperature structures (R%) of sodium nitrate (figure l ( a ) )  there are two 
orientations for the nitrate anions: one, which we designate by a = 1 ,  has one of the N- 
O bonds lying along the +a direction (in this paper all directions in both real and 
reciprocal space are referred to hexagonal rather than to rhombohedral axes), while the 
a = -1 orientation has a bond in the -a direction. As the anions have threefold 
symmetry, these orientations differ by a rotation of 60". The crystal structure defined by 
the centres of mass of the ions is R3m, and does not change at the transition. The average 
structure of the disordered phase is identical to the centre-of-mass structure, but in the 
ordered phase, the two nitrate ions in the rhombohedral unit cell have opposite values 
of a, so that the unit cell is double that of the disordered structure and the symmetry 
becomes R%. The additional allowed Bragg reflections that arise are due solely to 
scattering by the oxygen atoms, and occur at the Z point of the reciprocal lattice of the 
high-temperature structure. This point is also known as the T point [5] .  

Throughout this paper we shall use coordinates of the reciprocal lattice of the low- 
temperature R ~ c  structure in the hexagonal setting. In these coordinates the Z point of 
the high-temperature structure is at k = k, = 3c*.  In this ordering scheme, anions in the 
same plane perpendicular to c have the same value of a, while successive planes have 
alternating values of a; we shall refer to this as Z ordering. The alternative ordering 
scheme, which we shall call F ordering, is one in which anions in planes perpendicular 
to the F direction of the high-temperature lattice have the same value of a (figures l ( b )  
and l ( c ) ) .  Because these planes intersect the planes perpendicular to c, F ordering is 
incompatible with Z ordering and we shall argue that fluctuations in F ordering help to 
destroy Z ordering in the low-temperature structure thereby lowering the value of T,. 
The F ordering shows strong translation-rotation coupling between the orientational 
variables and the transverse phonon variables; the coupling gives rise to enhanced 
fluctuations in the anion and cation positions and softens one of the transverse acoustic 
phonon branches in the TF direction. Such coupling is forbidden by symmetry for Z 
ordering. 

In ordering to discuss the ordering processes and the translation-rotation coupling, 
and to use the simulation results to interpret the x-ray and neutron diffuse scattering 
observations, it is useful to introduce collective coordinates for both centre-of-mass and 
orientational displacements. Acoustic phonon, optic phonon and librational variables 
are defined by 
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s ; (k)  = N - l  mI(rl ,  - re,) exp(i k - rp) 
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a = x , y ,  2 

I 

I 

(1) L,(k)  = N-' 

L,(k)  = N-' 

Z,,Z,, exp(i k re) 
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1 

where m, is the mass of the ith ion, r, its instantaneous centre-of-mass position, re its 
equilibrium position and qI its charge; Nis  the number of molecules; 2, is the direction 
cosine between the crystal a axis (a  = x ,  y or 2 )  and the ion-fixed Z axis that is per- 
pendicular to the NO; plane; and q is the angle between a bond of the ith nitrate ion 
and the a direction. These coordinates are the acoustic translational, optic translational 
and out-of-plane and in-plane librational normal modes in the low-k harmonic limit. 

It is also useful to introduce a second type of orientational coordinate: 

Y(k)  = N-' cos(3qI) exp(i k rp). (2)  
1 

Although these coordinates are not independent of the coordinates L,, they are more 
useful for the description of the ordering. The ensemble (thermodynamic) averages of 
the Y(k) provide us with set of order parameters. Q ( k ) ,  defined by 

which can readily be measured from the simulation. In the disordered phase all the Q(k)  
are zero, while in the perfectly ordered calcite phase the value of the order parameter 
at the Z point is unity. In the transition from the disordered structure to the ordered 
structure, Bragg reflections appear at points in reciprocal space corresponding to this 
value of k.  Order parameters with other values of k correspond to alternative hypo- 
thetical structures which would have Bragg reflections at these values of k.  Although all 
Q(k)  are zero in the disordered phase, one anticipates that incipient ordering to a 
structure with a particular Q(k)  will be manifest in large-amplitude fluctuations in the 
corresponding coordinate Y(k) .  Such precursor effects should increase as the tem- 
perature is lowered towards the critical temperature and can be seen in a simulation. 

The possible values of k in the order parameters and the phonon and librational 
coordinates defined above are restricted to the first Brillouin zone of the centre-of-mass 
structure (R3m) (or to an equivalent single unit cell of the reciprocal lattice) because 
these coordinates are defined with phase factors (exponential terms) involving the 
equilibrium positions of the centres of mass. Figure 2(a) shows the Brillouin zone of the 
R3m structure with the special points r, Z. F and L marked. The full R3c structure of 
the low-temperature phase has a reciprocal lattice of the same form, but with the unit 
cell shrunk by a factor of two in the c" direction and rotated by 180". The L point of the 
centre-of-mass reciprocal lattice becomes the F point of the low-temperature lattice, 
while the F point of the centre-of-mass lattice lies outside the Brillouin zone of the low- 
temperature structure and maps onto its F point. In our subsequent discussion of diffuse 
scattering and of translation-rotation coupling we shall use the k = (ka,  0, k,) section 
through the reciprocal lattice, a plane containing the special points; this is shown in 
figure 2(b) .  We shall use the notation kZ.  kF, etc for the k vectors at the corresponding 
special points. Character tables for the space groups R3m and R ~ c  have been constructed 
by Boyle and Kennedy [ 5 ] .  There are two irreducible representations for quantities with 
kin this plane, C1 and Cz, which are symmetric and antisymmetric, respectively, under 

Q(k)  = (Y(k))  (3) 
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Figure 2. (a )  Brillouin zone of the RTm structure defined by the lacice of ttie centres of mass 
of the ions. (b )  Cross section through the reciprocallattice of the RScstructure. The Brillouin 
zones of the centres-of-mass structure are outlined. 

reflections in the plane. One of the transverse phonon coordinates and the orientational 
coordinate Y(k)  belong to Cz, while the longitudinal and the other transverse phonon 
coordinates belong to C1. 

From the simulations we can compute mean-square amplitudes and time correlation 
functions of the fluctuations in any coordinate. The Fourier transforms of the fluctuations 
in the phonon and librational coordinates give the corresponding spectra. Fluctuations 
in the orientational coordinates, Y(k) ,  at different k values signal different ordering 
processes. 

3. Potential model and molecular dynamics calculations 

3.1. The model 

In seeking an interionic potential model to describe the interactions in sodium nitrate, 
we follow the usual practice of assuming that the total potential energy is a sum of 
spherically symmetric atom-atom potentials Vwp(R),  where CY, /3 = Na, N or 0. The 
pair potentials are in turn written as the sum of a Coulombic term and a short-range 
Buckingham potential, i.e. 

V,(R) = 4&/R + A,exP(-PwpR) - B*p/R6. (4) 
The crystal is assumed to be fully ionic. Thus qNa = e ,  where e is the elementary charge, 
and 3q0 + qN = -e. We also suppose that the short-range interaction parameters are 
related by combining rules of the form 

Awp = (AwwApp)1/2 Pap = ( P m  + Ppp)1’2 Bwp = (BCrwBppP2. ( 5 )  

It follows that there are a total of 10 quantities to be specified: nine short-range par- 
ameters and one charge. Numerical values for these quantities were derived by a trial- 
and-error approach based on repeated molecular dynamics simulations, the technical 
details of which are given below. 

As a starting point, the Buckingham potentials used in earlier work on sodium nitrite 
[6] were adopted, together with the result suggested by ab initio calculations [7] for 
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Table 1. Parameters in the atom-atom potential. 

(Y qa ( e )  A,, (kJ mol-') r,, (k') B,, (kJ mol-' A6) 

Na 1.00 3.1696 X lo4  3.155 101 
N 0.95 1.408 X 10' 3.780 1084 
0 -0.65 2.925 X 105 4.180 1085 

the isolated ion that qo = -0.6e. The main criteria used were that the model should 
adequately reproduce the experimental lattice parameters, including the anomalously 
large temperature coefficient of expansion along the crystal c axis, while at the same 
time predicting the onset of orientational disorder of the anions in the correct range of 
temperature. It was found that at a constant external pressure the calculated lattice 
parameter a increased, but c decreased as the charge on the oxygen was made more 
negative, other parameters being held constant. Typically, a increased by between 1% 
and 2% and c decreased by between 5% and 6% as qo was varied between -0.50e and 
-0.6%. These trends led to some simplification of the task of parametrisation. The final 
values are listed in table 1. They clearly contain a strongly arbitrary element and 
constitute a representative rather than a definitive model. The short-range repulsions 
are significantly weaker than in the original work on sodium nitrite. In particular, the 
parameter Aoo is 20% smaller than that used earlier. By contrast, in recent calculations 
for potassium nitrate, Clarke and Smith [8] have combined the original nitrite short- 
range potentials with a charge model in which qo = -0.77e, and have been able to 
reproduce certain of the structural phase transitions of the potassium salt. 

3.2. Molecular dynamics calculations 

The molecular dynamics calculations were carried out by standard methods. The nitrate 
ions were treated as fully rigid entities with a N-0 bond length of 1.25 A. The equations 
of motion were integrated by use of the Verlet algorithm, with a time step of 0.01 ps; 
the rotation of the nitrate ions was treated by the generalised method of constraints, 
with the three oxygen atoms chosen as the basic particles in that scheme. Periodic 
boundary conditions were used and the Coulombic forces and energies were evaluated 
by the Ewald method; long-range corrections for the truncation of the short-range 
potentials were calculated in the usual way. Runs were initiated from the fully ordered 
low-temperature structure, and a substantial period of equilibration was allowed in 
order that any potential disorder in the system could develop. 

Preliminary runs designed to determine a suitable choice of potential parameters 
were carried out in the constant-temperature, constant-pressure ensemble with the 
external pressure set to zero; all cell lengths and cell angles were allowed to fluctuate. 
The system size used in these runs was 3a x 3b X I C ,  where the numbers represent the 
repeat distances along the crystallographic axes of the ordered structure in the hexagonal 
setting. The basic molecular dynamics cell therefore contained N = 54 molecules, i.e. 
108 ions or 540 interaction sites. The production runs were made at constant temperature 
and volume, with values of the lattice parameters taken from experiment. Five such runs 
were carried out, covering the temperature range from 293 K,  where experimentally the 
crystal is fully ordered, to 570 K, a temperature above that of the experimental order- 
disorder transition (549 K) but below the melting point (584 K). Four of the runs 
were made for a system of dimensions 3a X 3b X 2c ( N  = 108) and one for dimensions 
4a x 4b x 2c ( N  = 192). The run for N = 192 was made partly to provide a check on the 
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results obtained with the smaller system, but more specifically to obtain results at the L 
and F points in the Brillouin zone which, because of the periodic boundary conditions, 
are inaccessible for N = 108. 

Thermodynamics results from the five production runs are shown in table 2. Tabu- 
lated quantities include the mean potential energy U and mean electrostatic energy U,, 
the diagonal elements of the stress tensor T and the pressure P = -Tr T/3. The fact that 
the pressures are of the order of 1 kbar indicates a weak size dependence in the molecular 
dynamics results, since the potentials used were derived by fitting the experimental 
lattice constants for a system with N = 54. There are also some differences between runs 
I11 ( N  = 108) and IIIL ( N  = 192). Overall the results are satisfactory, given the fact that 
the bulk moduli of ionic compounds are very large, but there is clearly some scope for 
improvement in the potential. 

Contact with experiment can also be made through a comparison of fluctuations in 
the coordinates of the ionic centres of mass. Such quantities are not experimental 
observables, but values can be derived from measured neutron or x-ray structure factors 
if some model of disorder is invoked. The comparison is made in table 3, where the 
experimental values are those obtained from model I of Lefebvre et a1 [lo] as applied to 
their own scattering measurements. The results are presented in the form of fluctuations 
in rI and rll, where rl  is the displacement of an ion in the ab plane and rll is the displacement 
along the c axis. The agreement between experiment and simulation is as good as could 
reasonably be expected, giving further support to the choice of potential parameters. In 
the simulations, however, the displacements seem slightly more isotropic than in the 
experiments, where fluctuations along the c axis are significantly larger than those in the 
plane. 

The degree of orientational disorder was continuously monitored during the mol- 
ecular dynamics runs. The orientation of the nitrate ions was monitored by observing 
the single-particle order parameters, q l  and q 2 ,  defined by 

71 = ((-1Y cos 9) q 2  = ((-1)L cos 3 9 ) .  

In both these equations L numbers successive layers of nitrate ions which lie per- 
pendicular to the c axis and the average is over all nitrates in the molecular dynamics 
cell. The parameter q l  is altered by jumps between equivalent positions, so that its value 
depends on which bond is used to define . We used the bond that was initially nearest 
the a direction. If the structure is ordered and the motion is purely librational, both these 
quantities remain close to unity; if rotational motion is dominated by 120" jumps between 
equivalent positions, q2  will remain close to unity but q will decay to zero, while if the 
motion is predominantly between the states o = + 1 and - 1, i.e. 60" jumps, both order 
parameters will be close to zero. Values of q l  and q 2  for the production runs are shown 
in table 2. The phase factor in the definitions of these single-particle order parameters 
q z  is such that this parameter is the average value of the collective orientational variable 
Y(k,). Trajectories of values of Y(k,) are shown in figure 3. Clearly there is already 
considerable disorder in run I1 (450 K), but even at 518 K (runs I11 and IIIL) disorder is 
not complete. 

4. Selected results and their relation to experiment 

4.1. Anion disordering 

There are various ways in which the onset and extent of disorder in the simulations can 
be measured. The primary order parameter Q(kz)  ( = (Y(k,))) was monitored during 
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Table 3. Fluctuations in centre-of-mass coordinates. 

A?! (A') 

Run T(K) N Naf NO; 

I 293 108 0.0194 0.0179 

I1 450 108 0.0476 0.0452 
I11 518 108 0.0603 0.0573 

IIIL 518 192 0.0568 0.0536 

IV 570 108 0.0770 0.0748 

(0.0184) (0.0151) 

(0.0497) (0.0382) 

(0.0497) (0.0382) 

Nat NO; 

0.0219 0.0172 
(0.0264) (0.0236) 
0.0446 0.0354 
0.0539 0.0417 

(0.0548) (0.0526) 
0.0533 0.0452 

(0.0548) (0.0526) 
0.0634 0.0509 

Nat NO; 

0.25 0.23 
(0.25) (0.23) 
0.37 0.35 
0.42 0.40 

(0.39) (0.36) 
0.41 0.39 

(0.39) (0.36) 
0.46 0.45 

Bracketed values are experimental results [ 101. 

1 " " " " " " " ' 1 " " " " ' 1 " ' 1 '  

I 

6o Figure3. Time evolution of Y(k,) for three 0 20 40 

of the molecular dynamics runs. 

- 1  

t ips1 

each run. The subsequent analysis included the investigation of the probability distri- 
bution function for the anion orientation and the dynamics of anion reorientation. 

Figure 3 shows the variation of the instantaneous values of Y(kz) during trajectories 
taken from three of the runs. In the low-temperature run, I, there are small fluctuations 
about an average value near to unity; these are the result of thermal librational motion. 
Run IV, at 570 K, shows much larger fluctuations about a mean that is near to zero. The 
runs at intermediate temperatures also show large amplitudes of fluctuation, but with 
mean values that are not zero on the timescale of the runs (50 ps). The instantaneous 
value of Y(kz) changes sign in runs I1 and 111, which means that in these cases there is a 
transition from a domain with a positive value of Q(kz)  to one with a negative value. 
This raises the interesting point that the order parameter of the system depends on the 
timescale on which it is measured. These two runs show a non-zero order parameter, 
with fluctuations about a value that remains steady on timescales of tens of picoseconds, 
but it seems likely that transitions between the two domains occur faster than the 
nanosecond timescale. In a macroscopic system the value of Q depends on the spatial 
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Figure 4. The distribution of angles between 
nitrate ions and their ideal positions. 

extent of the averaging as well as on the timescale of the measurement, so that different 
experimental techniques may give different values for Q. 

In the simulations the anions remain in or close to the plane perpendicular to c. The 
extent to which the molecules tip out of this plane was found to be small even at 570 K 
(run IV), where in the plane the ions are completely disordered. We also found that 
there is no preferred direction of tipping relative to the crystal axes. The disorder is 
shown in the twisting of the anions about the c axis, away from their ideal positions, that 
is by variations in 9,. Figure 4 shows the distribution of molecular orientations in the 
plane plotted as a function of A q ,  the angle between a bond and its ideal position; A q  
runs between 0" and 60". In run I the distribution is approximately Gaussian, with a 
maximum at A q  = 0, as would be expected for librations in a harmonic potential. As 
the temperature is increased (runs I1 and ITIL), a subsidiary maximum appears at 60°, 
arising from molecules in the 'wrong' orientation. The width of the main peak also 
increases. In run IV the distribution is symmetrical, but by no means uniform. Although 
the ions move so that their orientations are randomised, they still experience a crystal 
field favouring two orientations, and cannot be said to be rotating freely. There is no 
evidence of preferred orientation in the 'aragonite' direction at 30", as proposed by 
Stromme [ll], and the results agree with neutron scattering results [lo]. 

The dynamics of anion reorientation is strongly affected by correlated motion of 
neighbouring ions. This can be seen both in the non-exponential decay of single-ion time 
correlation functions and in the different rates of decay of collective orientational 
variables for different values of k .  The time correlation function of the single-ion order 
parameter 0, defined to be $1 or -1 according to the sign of cos 3 q , ,  was computed. 
This order parameter was used because it is unaffected by librational motion, but it 
changes if an ion moves between the two favoured orientations. Its time correlation 
function was found to decay non-exponentially, at least for the greater part of the total 
decay. The reorientation process cannot, therefore, be described by a first-order rate 
equation or by a lifetime for a particular orientation. Some idea of the relative rates of 
decay can, however, be gained by comparing the time taken for the correlation function 
to decay to e-1 of its original value (z in table 4). In all runs except I (totally ordered), 
the fluctuations near the F and L points decay much more slowly than those near the r 
point. This is because the system is close to the critical temperatures associated with Z 
and F ordering. But one can also (and equivalently) describe the variation of behaviour 
with k in terms of correlations in real space: in this case, by the existence of correlated 
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Figure 5.  (a) Fourier transforms of the autocorrelation functions of the x components of ion 
velocity (below) and angular velocity (above). The full curves are for run I(350 K) and the 
broken curves are for run I11 (518 K). The non-zero baseline is an artefact of the maximum 
entropy method used for Fourier transformation. ( b )  As (a ) ,  but for the z components of 
ion velocity and angular velocity. 

Table 4. Time taken for the correlation function to decay to e-l of its original value 

Run I I1 111 IIIL IV 

z (PSI - 4.2 0.8 0.8 0.4 

dynamics of neighbouring ions. Further circumstantial evidence for correlated motion 
is found when trajectories of the orientations of neighbouring ions are compared. 

4.2.  Spectra of lattice modes 

The spectra of translational and librational lattice modes were found by taking the 
Fourier transforms of the time correlation functions of the phonon coordinates defined 
in equation (1). Phonon spectra can be measured experimentally for all values of k 
by inelastic neutron scattering [lo] and in the k - 0  limit by infrared and Raman 
spectroscopy [12-141. It is generally found that, while reasonable agreement can be 
found between the acoustic frequencies found in rigid-ion simulations and in experiment, 
the omission of polarisability from the model leads to discrepancies between the optic 
frequencies. Table 5 shows the assignment and symmetries of the zone centre modes in 
the R3c and R3m structures together with the frequencies found in the simulations and 
in the experiments. The interpretation of the spectra of the low-temperature phase is 
straightforward, but the selection rules in the high-temperature phase pose a problem. 
The space group R3m applies only to the average, not to the instantaneous structure. 
The critericn as to whether the average structure or the instantaneous structure is the 
one relevant to a spectroscopic measurement is whether the ratio of the timescale of 
structural changes to the inverse of the frequency shift between the spectra of each 
structure is less than or greater than unity. In a frozen disordered structure (where this 
ratio would be very large), one would expect the selection rules to break down and the 
observed spectra to be broad superpositions, i.e. to be inhomogeneously broadened. If 
the ratio were less than one, the nitrate ions would be rotating fast enough to appear disc- 
like, and the selection rules of the R3m structure would apply strictly. Experimentally the 
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infrared and Raman transitions broaden, but do not disappear as the phase transition is 
traversed. This suggests that the timescale for nitrate reorientation is slow compared 
with the spectroscopic timescale. In the simulations the timescale for reorientation is 
-10 ps in run I11 and -3  ps in run IV. The corresponding frequencies are 0.016 THz 
(0.53 cm-') and 0.053 THz (1.8 cm-') respectively. These timescales make it plausible 
that the selection rules of the average structure are not those appropriate to the infrared 
and Raman measurements. 

Linewidths in the simulation are found to increase with k for both the acoustic and 
librational modes. The longitudinal optic modes are broadest at small k and have shapes 
similar to the one-phonon density of states, suggesting that the anharmonicity of the 
system allows transitions to combinations of optic and acoustic modes. Mixing of modes 
of different types, but the same symmetry, is common and shows, for example, in the 
appearance of the same bands in spectra obtained from the correlation functions of both 
librational and translational coordinates. For k values in directions of low symmetry, 
mixing leads to complex spectra with many peaks. 

In the runs at higher temperatures the phonon spectra are considerably broader, and 
the optic phonons in the simulation disappear beneath the noise. Experimentally the 
Raman modes soften as well as broaden as the temperature is raised [12]. This is also 
found in the simulations and is principally due to the expansion of the c axis, which 
allows the ions to move further apart. There is also a softening of the transverse acoustic 
branch and both librational branches in the c* direction. Translation-rotation coupling 
between the orientations and displacements of the ions occur in the partially ordered 
and disordered phases. We find that this reaches a maximum at the F point. One 
result is the appearance of a central relaxational component in the phonon spectra of 
translational modes of appropriate symmetry. As this coupling is important for the 
discussion of the x-ray diffuse scattering and, we believe, affects the disordering process, 
we leave the detailed discussion to the next section. 

4.3. Hard-mode Raman spectra 
Experimental observations of the internal modes have also been made [13,15]. The 
lines broaden more than expected as the temperature is raised towards that of the phase 
transition. This behaviour may in part be due to fluctuations in the local environment, 
but there is also a contribution due to anharmonicity, which allows transitions to com- 
binations of internal modes and phonon modes. If there is little dispersion of the internal 
modes, the resulting lineshape should be the same as the one-phonon density of states, 
which in turn is proportional to the Fourier transform of the ion centre-of-mass velocity 
autocorrelation function. The latter can be calculated directly from the simulation. 
Figure 5 shows the Fourier transforms of the x and z components of both linear and 
angular velocities. The sum of the x ,  y and z angular velocity autocorrelation functions 
is identical to the one-libron density of states in the harmonic approximation. The most 
dramatic change on going from run I (ordered, full curve) to run I11 (partially ordered, 
broken curve) is the appearance of a non-zero intercept in the z angular velocity 
spectrum. This is the result of the reorientation of the nitrate ions. There is also a shift 
of the maxima to lower frequencies, especially for the T, phonons. 

5. Nature of the ordering transition 

5.1. Order parameters 
As described in § 2, the ensemble (thermodynamic) averages of the orientational coor- 
dinates Y(k)  provide us with a set of order parameters, Q ( k ) ,  which can readily be 
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Figure 6. Regions of large fluctuations in the 
orientational coordinates Y( k )  in the disordered 
phase are shown by ellipses on a cross section of 
the reciprocal lattice containing the special points. 
The first Brillouin zone of the R3m structure is 
shown. 

measured from the simulation. In the disordered phase incipient ordering to a structure 
with a particular Q(k) will be manifest in large-amplitude fluctuations in the cor- 
responding coordinate, Y(k) .  Such precursor effects should increase as the temperature 
is lowered towards the critical temperature. 

5.2. Obseruedfluctuations in Y(k) 

In run IV, which is completely disordered, fluctuations in Y(k) are larger than average 
in two regions of reciprocal space, namely along c* ,  rising to a maximum at the zone 
boundary point Z (3c" in the hexagonal setting of the low-temperature R ~ c  structure), 
and along the lines from r to the three equivalent F points. The fluctuations along the 
lines from r to the L points are less than average. As the temperature is reduced to the 
conditions of run I11 (which is partially ordered), the mean-square values of Y(k) are 
reduced in most parts of reciprocal space by about lo%,  but at the Z point (3c*) and at 
points along cx nearby (2.5c* and 2c*)  they are considerably enhanced, and they are 
slightly enhanced at the two accessible points nearest the T-F direction. The F point 
itself is inaccessible in this simulation; a larger simulation at the same temperature (run 
IIIL) showed a local maximum at that point. These results are shown schematically in 
figure 6. The two regions of enhanced fluctuations in Y(k)  correspond to the two ordering 
processes mentioned in the introduction. They both contribute to x-ray and neutron 
diffuse scattering, as we discuss later. 

The onset of order in rotator phases is often accompanied by a distortion of the 
lattice, due to a simultaneous freezing-in of a phonon mode with the onset of a non-zero 
average for the order parameter Q ,  so that the transition is of mixed displacive and 
order-disorder type. While it is not necessary for an orientational ordering transition to 
be accompanied by such a distortion, and indeed the Z-ordering process does not do so 
(for symmetry reasons), if distortion and orientational ordering occur simultaneously 
they provide another way in which incipient ordering can be studied in simulations [ 161. 
The phenomenon is known as translation-rotation coupling and results from coupling 
terms in the free energy between a phonon displacement coordinate and an orientational 
coordinate at the same k value [17]. The consequences of this coupling are that fluc- 
tuations in the phonon and orientational coordinates in the disordered phase are cor- 
related with correlation coefficient E, fluctuations in both coordinates are enhanced by 
a factor of (1 - E')-', and that T, is raised as the phonon displacement assists the 
ordering. Phonon dynamics are also affected by the coupling. 
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Figure 7. The extent of translation-rotation coup- 
ling in runs 111 and IIIL is shown for k vectors in a 
cross section of the reciprocal lattice. Contours of 
E' are drawn at intervals of 0.25; E* = 0 on the 
broken line, 0.23 at the L points and 0.93 at the F 
points. 

Translation-rotation coupling may only occur between s(k) and Y(k)  variables of the 
same symmetry. In the space group R3m mixing between Y(k)  and phonons is forbidden 
by symmetry at the point and for kvalues along c * .  Hence there is no lattice distortion 
and no translation-rotation coupling associated with the Z ordering. When the wavevec- 
tor lies in one of the planes containing r, Z and one of the three equivalent pairs of 
F and L points (see figure 2(6)), Y(k) may couple to the transverse phonon whose 
displacement is perpendicular to the plane. We measured the extent of this coupling 
through the correlation coefficient, S, defined by 

The value of Ez varies between zero where there is no correlation to one for complete 
correlation [ 171. The latter occurs only at the transition point to a new phase in which 
both coordinates are non-zero on average. The angular brackets in this expression for 
E denote ensemble averages, which may readily be computed from the simulation. 
Figure 7 shows contour plots of the values of E* found in the simulation for k vectors in 
the TZF plane shown in figure 2(b) .  The high value of Z 2  (0.93) found at the F point 
indicates that fluctuations at the F point are nearly large enough to cause a phase 
transition to the F-ordered phase which would be monoclinic (figures l ( b )  and ( c ) ) .  We 
conclude that F ordering is a serious competitor to Z ordering, at least in this model. 
Rotation-translation coupling is forbidden by symmetry along the c* axis, so this method 
of probing ordering in the simulation cannot be used for Z ordering. 

5.3. X-ray diffuse scattering and neutron inelastic scattering 
There is some evidence in the x-ray diffuse scattering experiments for the existence of 
fluctuations in both Z and F ordering, although it is difficult to distinguish between 
scattering due to phonon fluctuations and orientational fluctuations near the F point. 
Early x-ray observations of the disordered phase [18] showed three types of x-ray 
diffuse scattering: pancakes around the Bragg points, bridges between Bragg points, and 
scattering around the superlattice points. Referred to a single unit cell of the reciprocal 
lattice, the pancakes are around the r points perpendicular to the c* axis, the bridges 
are along the T-F directions with maxima at the F points, and the superlattice scattering 
is near the Z points. All the diffuse scattering is very weak. 

The simulation data show the effects described above in both x-ray and neutron 
diffuse scattering. The intermediate scattering function. F(q,  t )  and the diffuse scat- 
tering, S(q) ,  at a point q in reciprocal space are calculated from the fluctuations in p(q) ,  

q k )  = (s(k)* Y(k))/((s(k)*s(k))( Y(k)  * Y(k)) )  l'z. (6) 
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S(q) = (P(4)P(4*))  a 7  t )  = (P(Q7 o)P(q*7 t ) )  (8) by 

and S(q, U )  is the time Fourier transform of F(q,  t) .  In equation (7)  b, is the scattering 
length for the ith atom. The neutron scattering lengths are Na = 0.36, N = 0.94 and 
0 = 0.58. The equivalent factors for x-ray scattering are the form factors, which are 
dependent on q. These were calculated using standard formulae [19]. In addition, 
scattering was calculated using the hypothetical scattering lengths Na = 0.0, N = 1.0 
and 0 = -3.0, which were chosen to eliminate the effects of centre-of-mass motions 
from the scattering. The results of these calculations will be called orientational scat- 
tering. 

Diffuse scattering at a point q in reciprocal space must be related to fluctuations in 
either phonon coordinates or librational coordinates or the orientational coordinate 
Y(k) at the vector k in the first Brillouin zone which corresponds to q. By comparing the 
amplitudes of these fluctuations with the computed values of S(q), we were able to 
identify the superlattice scattering with fluctuations in Z ordering and the pancakes with 
large transverse acoustic phonon fluctuations for small k values and displacements in the 
c direction. The latter observation suggests that the model has a low value of the 
corresponding elastic constant C44, which is also abnormally low in the real crystal 
[20,21]. The bridges are associated both with the F-ordering fluctuations and with 
transverse phonon displacements. Even in the completely ordered structure, neutron 
measurements [22] show that one of the transverse phonon modes is softened as the F 
point is reached. This softening, by itself, would give rise to some x-ray diffuse scattering. 
As the disorder increases, fluctuations in these phonons are enhanced by translation- 
rotation coupling, and, in addition, scattering will occur from fluctuations in the orien- 
tational variable. 

The character table of the space group R3m shows four symmetry species (irreducible 
representations), namely F: , F: , F; and F; , associated with the F point. In order to 
observe contributions from the F ordering and the transverse phonons with the same 
symmetry (F; ) that are softened by translation-rotation coupling, it is necessary to have 
a component of q which is perpendicular to the plane containing k, and c * :  we shall call 
such a q an out-of-plane q. In-plane q s ,  which lie in this plane, only show F; phonons, 
that is phonons with displacements in the plane. This contrast is illustrated in figure 8 
which shows the magnitude of the diffuse scattering for x-rays and neutrons as reciprocal 
space is traversed along a line parallel to c* passing through F and L points. One such 
line is marked in figure 2(b).  The in-plane qs,  (0, 1.5, c), show no enhanced scattering 
at the F points; the small maxima seen are associated with the edges of the pancakes 
around r points. The out-of-plane q s ,  (-3> 1.5, c), show enhanced scattering at the F 
points, and nothing at the L points. This effect is most marked for the hypothetical 
orientational scattering (the curve with no symbols). The computed neutron and x-ray 
scattering results show cancellation at F points in alternate zones. This shows that a large 
contribution to the diffuse scattering comes from acoustic (as opposed to optic) phonons. 

The contrast between the in-plane and out-of-plane q scattering also shows up in the 
dynamics. Figures 9 and 10 show F(q,  t )  and S(q,  w )  computed from the simulation for 
neutron scattering for the two F points at c = 0 in figure 8. The large fluctuations seen 
in the scattering at the out-of-plane q decay more slowly than those seen at the in-plane 
q, giving a sharp central peak in the neutron spectrum. 

5.4. Interpretation of ordering in N a N 0 3  

Landau theory often provides a useful method for describing ordering in orientationally 
disordered crystals. The free energy of such a system is written as a Landau expansion 
in terms of powers of orientational order parameters Q ( k ) :  
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Figure 8. Calculated diffuse scattering for in-plane wavevectors q = (0 ,  1.5, 5) (below) and 
out-of-plane wavevectors q = (3,1.5, C) (middle). X-ray scattering is shown by square 
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Every term in this expression must be completely symmetrical under the operations of 
the space group of the disordered phase. The equilibrium configuration is found by 
minimising this expression with respect to all the order parameters. If all the coeficients, 
Ai, are positive, there is no net order, i.e. &(ki) = (Y(k,))  = 0, and the symmetry is not 
broken. Fluctuations in the order parameters are described by 

(Y(ki)')  = kT /A i  T > T,. (10) 

In Landau theory, at least one of the coefficients has the form Ai  = ai( T - Tc),  so as T, 
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is approached from above the amplitude of the fluctuations increases rapidly; their 
dynamics also slow down. Below T, the order parameter Q(kJ  is no longer equal to zero 
and the symmetry is broken. The theory predicts that, as the temperature is lowered 
further, either the mean value of the order parameter increases with critical exponent 
/3 = 1/2, and that the fluctuations about this value decrease as (T ,  - T)- l ,  or, if, as often 
happens in practice, the coefficients of the quartic terms (C,) are small, /3 = 1/4 and the 
mean-square fluctuations decrease as (T,  - T)-'/*. This latter behaviour is often known 
as tricritical, as it is found near a tricritical point. In the simulation we have identified 
two potential ordering processes, and the corresponding order parameters Q(k,) and 
Q(kF) must be included in the Landau free-energy expression. The Z point is unique, 
but there are three symmetry-related Fpoints so that each Q(kF) is threefold degenerate, 
Q(kF) = ( f l , f 2 , f 3 ) ,  and the terms in the Landau expression arising from Q(kF)  are 

G F =  GO +AF(f:  + f :  + f : >  + c l F ( f !  + f 2 "  + f ! >  + C 2 F ( f ? f 3 2  + f : f ?  + f : f : ) *  
The formula for the Landau free energy of sodium nitrate is the sum of this expression 
together with contributions from Q(kz )  and all cross terms that are totally symmetric, 
such as 

It has been found that such terms may arise from the coupling of the orientational order 
parameters with the strain [23], for example; in this case terms such as Q(k2)*& and 
f: E may occur. The anomalously large coefficient of expansion along the c axis below T, 
in both calcite and sodium nitrate suggests that these terms should be included. 

From experimental observation we know that the primary order parameter is Q(k,) 
and that the contribution of the fourth-order term is small (C = 0), since the value of 
the critical exponent /3 is 1/4 rather than 1/2 at temperatures well below T,. However, 
the presence of significant flucuations in other order parameters may have a large 
influence on the ordering and on the phase transition. 

Landau theory is only approximate. It is based on some form of a mean-field 
approximation and is known to fail in the Ginzburg interval, which is the temperature 
range in the immediate vicinity of T, where the critical fluctuations are larger than the 
order parameter. It has been shown both experimentally and theoretically that the 
Ginzburg interval is often very small (or absent) for ferro-elastic systems [24]. Taking 
the large spontaneous strain (shown by the large temperature coefficient of the lattice 
constant c) of CaC03 and NaN03 as evidence for a high contribution of elastic energy 
to the total excess Gibbs free energy, one might expect to find classical Landau behaviour 
to remain valid very close to T,. Indeed, tricritical Landau behaviour ( Q  
(T ,  - T)-lI4) is found for temperatures between room temperature and T, for calcite 
[25]. Sodium nitrate by contrast shows a non-classical exponent, /3 = 0.22, over a large 
temperature range (between T = 460 K and T,). Tricritical Landau behaviour occurs at 
lower temperatures (between 50 and 460 K). The question arises, therefore, whether 
the non-classical behaviour is due to large fluctuations of the order parameter, due to 
order parameter coupling, due to cross-over to a different transition mechanism as the 
critical temperature is approached from below, or due to some other effect. 

A clear distinction between these different suggestions appears very difficult on 
purely experimental grounds [ 11. On the basis of our molecular dynamics simulations. 
however, we suggest that coupling between the F and Z order parameters plays a crucial 
role. This coupling arises both from the direct interaction between the corresponding 
coordinates, or indirectly via coupling of both to the elastic strain. The direct interaction 
is due to interference between the order parameters, which arises because any given 

Q ( k d 2 ( f ?  + f :  + f :> .  
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nitrate position cannot be more than totally ordered. If the lattice is, say, in the perfectly 
ordered Z structure, then there can be no fluctuations in any other order parameter. 
Large fluctuations of the F order parameter help to destroy the Z structure and therefore 
reduce T,. This interference can most easily be seen by transforming back from reciprocal 
space to real space. At  some position i the instantaneous value of the orientational 
coordinate of molecule i, cos 3 q ,  is given by a sum of the collective variables at every 
wavevector: 

cos(3q,) = exp(-ik.rp) Y ( k ) .  
k 

As the modulus of cos 3 q  cannot exceed unity at any site, at any instant the fluctuations 
in the coordinates corresponding to order parameters are restricted by the condition 

c lY(k)l 1 
k 

which means that instantaneous fluctuations in one orientational coordinate help to 
destroy order in another coordinate. In this case there are large-amplitude fluctuations 
in Y(kF)  near T,, and these help to destroy the Q(kz)  order, lowering T,. 

In the Landau expresion this effect has two consequences: firstly, it contributes a 
positive biquadratic coupling between Q(kF) and Q(k, ) ,  and secondly, even when the 
order parameter Q(kF) is zero it gives a renormalisation of the coefficient of Q(k$ 
which becomes 

AZ(eff> = (AZ + A(Y(kFI2>) 
where A is a positive constant, resulting in a lowering of T,. The temperature dependence 
of Az(eff) is affected by the change in amplitude of the fluctuations in Y(k,) so that the 
critical exponent p is reduced from its classical value; this may account for the lowering 
of /3 from the classical value of 0.25 to the observed value of 0.22. 

Biquadratic coupling between Q(kF)  and Q(kz) in the Landau expression also arises 
indirectly if both order parameters couple to the strain. Salje and Devarajen [23] have 
investigated the general properties of Landau systems with strain-induced coupling 
between two order parameters. They show that the effective biquadratic coupling is 
positive if the coupling of the two order parameters to the strain has opposite signs. They 
fihd a wealth of possible phase diagrams depending on the values of the parameters in 
the Landau expression. In particular, even where the ground state corresponds to one 
of the order parameters (Q(k,)  in our case), one can get changes to mixed phases and/ 
or to other ordered phases before reaching the completely disordered phase. 

5.5. Molecular aspects of the ordered structures 

Figure l ( a )  shows the calcite structure with Z ordering. The structure is held together 
primarily by the attraction between cations and oxygen atoms in the layers above and 
below. Within a nitrate layer repulsion between the oxygen atoms causes the nitrates to 
remain apart and the near octahedral arrangement of oxygens around each sodium 
ensures a minimum repulsion between oxygens in one layer and the next layer above. 
Figure l(b) shows the hypothetical F-ordered structure viewed from above. Again, each 
sodium ion interacts with three oxygen atoms in the layer above and below in much the 
same way as in the Z structure. The relation of the oxygen atoms in these two layers is, 
however, less favourable, so one might expect the c parameter to be larger in the F 
structure, In the disordered structure this interlayer repulsion is likely to be intermediate 
between these two, and is certainly greater than in the Z structure. This explains the 
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large thermal expansion along the c axis and the coupling between the Z order parameter 
and the strain. One can also see the reason for the large rotation-translation coupling 
in the F structure. In figure l (b)  alternate F planes have had to be translated relative to 
each other in order to pack the nitrate ions in their layers after rotating alternate rows 
of ions from the (T = + 1 to the G = - 1 orientations. 

Acknowledgments 

We thank W Poon, W W Schmahl and M T Dove for discussions and for communicating 
experimental results before publication, and the Leverhulme Trust for financial support 
(to ES). 

References 

[l] Poon W C-K and Salje E 1988 J .  Phys. C: Solid State Phys. 21 715 
[2] Schmahl W W and Salje E 1989 Phys. Chem. Minerals submitted 
[3] Shen T Y, Mitra S S ,  Casella R C and Trevion S F 1975 Phys. Rev. B 12 4530 
[4] Klement W 1970J. Phys. Chem. 74 2753 
[5] Boyle L L and Kennedy J M 1988 2. Kristallogr. 182 39 
[6] Klein M L and McDonald I R 1982 Proc. R. Soc. A 382 471 
[7] Wyatt J F, Hillier I H, Saunders V R, Connor J A and Barber M 1971 J .  Chem. Phys. 54 5311 
[8] Clarke J H R and Smith W 1989 J .  Phys.; Condens. Matter 1 at press 
[9] Allen M P and Tildesley D J 1987 Computer Simulation ofLiquids (Oxford: OUP) 

[lo] Lefebvre J ,  Fouret R and Zeyen C M E 1984 J .  Physique 45 1317 
[ l l ]  Strdmme K 0 1969 Acta Chem. Scand. 23 1616; 1972Acta Chem. Scand. 26 477 
[12] Brehat F and Wyncke B 1985 J .  Phys. C: Solid State Phys. 18 4247 
[ 131 James D W and Leong W H 1968 J .  Chem. Phys. 49 5089 
[14] Neumann G and Vogt H 1978 Phys. Status Solidi b 85 179 
[15] Poon W C-K and Salje E 1988 private communication 
[16] Lynden-Bell R M, McDonald I R and Klein M L 1983 Mol. Phys. 57 865 
[17] Michel K H and Naudts J 1977 J .  Chem. Phys. 67 547; 1978 J .  Chem. Phys. 68 216 
[18] Shinnaka Y 1964 J .  Phys. Soc. Japan 19 1281 
[19] Cromer D T and Waber J T 1974 International Tables of Crystallography vol IV, ed. J A Ibers, W C 

[20] Hearmon R F S 1971 Phys. Status Solidi a 5 K183 
[21] Ramachandran V, Ibrahim M M, Padaki V C and Gopal E S R 1981 Phys. Status Solidi a 67 K49 
(221 Schmahl W W private communication 
(231 Salje E and Devarajan V 1986 Phase Transitions 6 235 
[24] Bismayer U, Salje E, Glazer A M and Cosier J 1986 Phase Transitions 6 129 

Salje E 1985 Phys. Chem. Minerals 12 93; 1987 Phys. Chem. Minerals 14 181 
[25] Dove M T and Powell B M 1989 Phys. Chem. Minerals 16 503 

Hamilton and G D Reick (Birmingham: Kynoch) 


